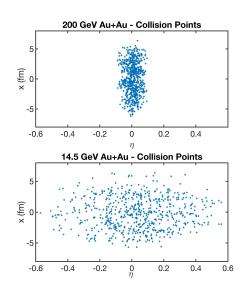
# Comparing initial states of 96Ru+96Ru and 96Zr+96Zr collisions at 200 GeV using a LEXUS inspired model

#### Aritra De


January 27, 2022

# University of Minnesota Driven to Discover®

Authors: Aritra De, Joseph Kapusta, Mayank Singh, Thomas Welle

#### INITIALIZATION OF NUCLEI USING MONTE CARLO SAMPLING

- Monte-Carlo sampling of Woods-Saxon distribution for nucleons.
- LEXUS (Linear EXtrapolation of Ultrarelativistic nucleon-nucleon Scattering to nucleus-nucleus collisions) initial state.
- LEXUS was formulated in momentum space, but information on coordinate space need to be specified.



#### INITIAL STATE MODEL

- An approach to describe energetic nucleus-nucleus collisions as a sequence of binary nucleon-nucleon collisions.
- All information comes from simple parametrizations of nucleon-nucleon collision data.
- Energy lost in a collision is sampled from the distribution:

$$P(y_{loss}) = \frac{\cosh(2y_{rest-frame} - y_{loss})}{\sinh(2y_{rest-frame}) - \sinh(y_{rest-frame})}$$

- $y_{\text{rest-frame}}$  is the absolute value of the incoming nucleons' rapidity in the pair rest frame and rapidity loss is  $y_{\text{loss}}$ .
- $\blacksquare$  Particles are produced with a Gaussian distribution with width given by  $\ln(\frac{\sqrt{s}}{2m_N}).$
- After their final collisions, baryons are propagated by a fixed time 0.5 fm/c in their own rest frame and inputted as a source in the baryon current.

#### Woods Saxon parametrization

Nuclear deformation is described by a deformed Woods-Saxon form.

$$\rho(r, \theta, \phi) = \frac{\rho_0}{1 + e^{[r - R(\theta, \phi)]/a_0}}$$

$$R(\theta, \phi) = R_0 (1 + \beta_2 Y_0^2 + \beta_3 Y_0^2)$$

 $\beta$  parameters are the following with the references.

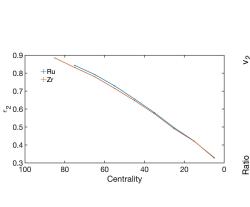
|    | $\beta_2$ | $\beta_3$ |
|----|-----------|-----------|
| Ru | 0.154     | 0         |
| Zr | 0.062     | 0.235     |

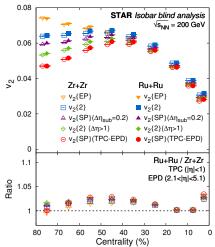
- B. Pritychenko, M. Birch, B. Singh, and M. Horoi, "Tables of E2 Transition Probabilities from the first 2+ States in Even-Even Nuclei," Atom. Data Nucl. Data Tabl. 107, 1–139 (2016), [Erratum: Atom.Data Nucl.Data Tabl. 114, 371–374 (2017)].
- T Kibedi and R.H. Spear, "reduced electric-octupole transition probabilities, B(E3;0+1  $\Rightarrow$  3-1) an update," Atom. Data Nucl. Data Tabl. 80, 35–82 (2002).

#### $\epsilon_n$ Calculation

The initial stage energy anisotropies are characterized by  $\epsilon_n$ .

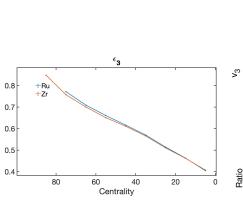
$$\epsilon_n = rac{\sqrt{\langle r^n \cos(n\phi)
angle^2 + \langle r^n \sin(n\phi)
angle^2}}{\langle r^n
angle}$$

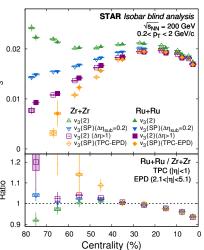

Averaged quantities are the energy density weighted averages over the transverse plane.


$$\langle A \rangle = \frac{\int dx^2 A \, \epsilon(x)}{\int dx^2 \, \epsilon(x)}$$

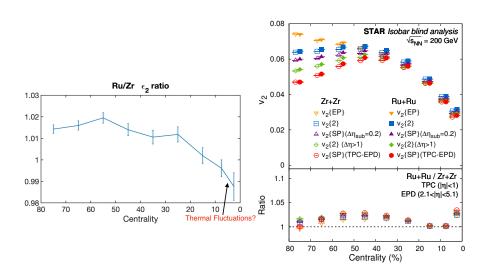
Spatial anisotropies will act as a proxy for the momentum anisotropies.

And 
$$v_n \sim \epsilon_n$$


# $\epsilon_2$ for $10^6$ events and $\nu_2$







6/10

# $|\epsilon_3|$ for $10^6$ events and $v_3$

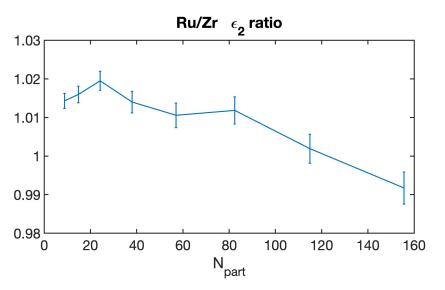




## $\epsilon_2$ ratio for $10^6$ events



8/10


## $\epsilon_3$ ratio for $10^6$ events



#### Conclusions

- We have proposed a new LEXUS inspired initial state model. Investigation of this initial state with quadrupole and octupole deformations.
- We get a qualitative match for  $\epsilon_2$ ,  $\epsilon_3$  ratios with STAR ( $v_2$  and  $v_3$  ratios) data.
- At low centralities, we expect significant differences in these ratios from  $v_2$  and  $v_3$  ratios respectively because of thermal fluctuations.
- Final goal of this project is to run the initial state through hydrodynamics.

Thank You for Listening!



